ysfree.blogg.se

A queueing model for finite load ieee 802.11 random access mac
A queueing model for finite load ieee 802.11 random access mac







a queueing model for finite load ieee 802.11 random access mac

Recently, unmanned aerial vehicles (UAVs) with the characteristic of low-cost, strong robustness, various applications etc., have become a high-tech with rapid growth and attracted much attention in both military and civil fields.

a queueing model for finite load ieee 802.11 random access mac

Simulation results show that the protocol can differentiate services for different priorities in FANETs according to real-time channel state, providing effective QoS guarantee for transmissions of various information, and the network bandwidth resource is efficiently utilized. We further model the multi-priority queueing and service mechanism by the multi-class queueing theory, and model the backoff mechanism using the Markov chain model. The multi-priority queueing and service mechanism, and the multi-channel load-based backoff mechanism involved in the protocol are intensively described.

A queueing model for finite load ieee 802.11 random access mac mac#

In order to overcome the disadvantages in IEEE 802.11 distributed coordination function (DCF) and time division multiple access (TDMA) protocols, a novel multi-channel load awareness-based MAC protocol for FANETs is presented in this paper.

a queueing model for finite load ieee 802.11 random access mac

Designing a multi-priority traffic differentiated medium access control (MAC) protocol with low delay, large capacity, high flexibility, and strong scalability is a great challenge in the researches and applications of FANETs. Flying ad hoc network (FANET) is a promising and special mobile Ad hoc network, connecting large number of flying unmanned aerial vehicles (UAVs) on battlefield through wireless link.









A queueing model for finite load ieee 802.11 random access mac